Case Study: ANW Food × WhatoFlow Reinventing Delivery Tracking with WhatsApp Automation
- yeungchan0
- 10月21日
- 讀畢需時 2 分鐘
已更新:10月27日

ANW Food is one of Hong Kong’s leading food distributors, serving chain restaurants and hotels with daily delivery operations. The team previously relied heavily on manual communication for paper delivery note confirmations — a process that was time-consuming and prone to human error.
ANW Food 是香港主要的餐飲食材供應商之一,為多間連鎖餐廳及酒店提供食品批發服務。公司每天需處理大量送貨單據及簽收確認,過去主要依賴人手收回簽收單,既耗時又容易出錯。

The Challenge | 挑戰
Hundreds of delivery notes were manually sent and tracked daily
Drivers and CS staff had to verify each signed delivery note one by one
Customers often forgot to return signed receipts
Reporting and archiving were slow and inconsistent
每天數百張送貨單需要人工發送與追蹤
司機及 CS(客戶服務)需手動核對每份簽收記錄
客戶常忘記回傳簽收圖片或簽名
報表統計與文件歸檔效率低下
Key Features | 主要功能亮點
Driver Uploads Delivery Note: WhatsApp photo → Auto-reads data from QR Code
Automated Customer Message: Sends WhatsApp request for confirmation
Customer Signs & Replies: AI validates signatures/stamps, auto-generates PDF
Auto Storage: Files saved to network drive with standardized naming
Daily Report: 5PM auto-reminder for unconfirmed deliveries, email alerts to CS
司機上傳送貨單:WhatsApp 傳送照片 → 系統自動讀取二維碼 (QR Code)資料
自動客戶發送:比對後,自動發 WhatsApp 請客戶簽收
客戶回傳簽名:AI 辨識手寫簽名 / 公司蓋章,並自動產生 PDF
自動歸檔:以「客戶編號 + 單號 + 日期」命名儲存到網絡磁碟機
每日報表提醒:下午 5 點自動提醒未簽收客戶 + Email 通知 CS

Results | 成果
70% reduction in delivery confirmation time
Over 90% customer response rate
Near-zero document errors
CS workload greatly reduced with auto-generated daily reports
送貨簽收流程時間縮短 70%
客戶回覆率提升至 90% 以上
文件錯漏率幾乎歸零
CS 工作量大幅減輕,每日報表自動生成
.png)
.png)


留言